Galois scaffolds and semistable extensions

Kevin Keating Department of Mathematics University of Florida

March 16, 2019

References

[Bon1] Mikhail V. Bondarko, Local Leopoldt's problem for rings of integers in abelian *p*-extensions of complete discrete valuation fields, Doc. Math. **5** (2000), 657-693.

[Bon2] Mikhail V. Bondarko, Local Leopoldt's problem for ideals in totally ramified *p*-extensions of complete discrete valuation fields, Algebraic number theory and algebraic geometry, 27–57, Contemp. Math. 300, Amer. Math. Soc., Providence, RI, 2002.

[BCE] Nigel P. Byott, Lindsay N. Childs, and G. Griffith Elder, Scaffolds and generalized integral Galois module structure, Ann. Inst. Fourier (Grenoble) **68** (2018), 965–1010.

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_K : K^{\times} \to \mathbb{Z}$, whose residue field \overline{K} is a perfect field of characteristic p. Also let

$$\mathcal{O}_{K} = \{ lpha \in K : v_{K}(lpha) \geq 0 \}$$

= ring of integers of K

 $\pi_{\mathcal{K}} =$ uniformizer for $\mathcal{O}_{\mathcal{K}}$ (i.e., $v_{\mathcal{K}}(\pi_{\mathcal{K}}) = 1$)

$$\mathcal{M}_{\mathcal{K}} = \pi_{\mathcal{K}} \mathcal{O}_{\mathcal{K}}$$

= unique maximal ideal of $\mathcal{O}_{\mathcal{K}}$

Let L/K be a totally ramified Galois extension of degree $q = p^n$, and set G = Gal(L/K).

Galois scaffolds (setup)

Let $b_1 \leq b_2 \leq \cdots \leq b_n$ be the lower ramification breaks of L/K, counted with multiplicity. Assume that $p \nmid b_i$ for $1 \leq i \leq n$. Set $\mathbb{S}_{p^n} = \{0, 1, \dots, p^n - 1\}$ and write $s \in \mathbb{S}_{p^n}$ in base p as

$$s = s_{(0)}p^0 + s_{(1)}p^1 + \cdots + s_{(n-1)}p^{n-1}$$

with $0 \leq s_{(i)} < p$. Define $\mathfrak{b} : \mathbb{S}_{p^n} \to \mathbb{Z}$ by

$$\mathfrak{b}(s) = s_{(0)}p^0b_n + s_{(1)}p^1b_{n-1} + \cdots + s_{(n-1)}p^{n-1}b_1.$$

Let $r : \mathbb{Z} \to \mathbb{S}_{p^n}$ be the function which maps $a \in \mathbb{Z}$ onto its least nonnegative residue modulo p^n . The function $r \circ (-\mathfrak{b}) : \mathbb{S}_{p^n} \to \mathbb{S}_{p^n}$ is a bijection since $p \nmid b_i$. Therefore we may define $\mathfrak{a} : \mathbb{S}_{p^n} \to \mathbb{S}_{p^n}$ to be the inverse of $r \circ (-\mathfrak{b})$. Extend \mathfrak{a} to a function from \mathbb{Z} to \mathbb{S}_{p^n} by setting $\mathfrak{a}(t) = \mathfrak{a}(r(t))$ for $t \in \mathbb{Z}$.

Galois scaffolds

Definition (cf. [BCE], Definition 2.6)

A Galois scaffold for L/K consists of elements $\Psi_i \in K[G]$ for $1 \le i \le n$ such that the following hold:

A Galois scaffold for L/K can be used to get information about the Galois module structure of ideals in \mathcal{O}_L . It can also be used to give sufficient conditions for the associated order of \mathcal{O}_L to be a Hopf order.

The Map $\phi: L \otimes_{\mathcal{K}} L \to L[G]$

There is a K-linear map $\phi: L \otimes_{K} L \rightarrow L[G]$ defined by

$$\phi(a\otimes b)=\sum_{\sigma\in G}a\sigma(b)\sigma.$$

For $x \in L$ we get

$$\phi(a \otimes b)(x) = \sum_{\sigma \in G} a\sigma(bx) = a \operatorname{Tr}_{L/K}(bx).$$

Proposition ([Bon1], Proposition 1.1.2) ϕ is an isomorphism of K-vector spaces.

A Partial Order

Recall that $[L:K] = p^n = q$.

Let H be the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by the element (q, -q).

For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ write [a, b] for the coset (a, b) + H.

We define a partial order on the quotient group $(\mathbb{Z} \times \mathbb{Z})/H$ by $[a, b] \leq [c, d]$ if and only if there is $(c', d') \in [c, d]$ such that $a \leq c'$ and $b \leq d'$.

We often use the following set of coset representatives for $(\mathbb{Z} \times \mathbb{Z})/H$:

$$\mathcal{F} = \{(a,b) \in \mathbb{Z} imes \mathbb{Z} : 0 \leq b < q\}$$

An Example

Let q = 9. Here is the set

 $\{(c,d)\in\mathcal{F}:[-3,2]\leq [c,d]\}.$

Expansions of Tensors

Choose a uniformizer π_L for L and let \mathcal{T} be the set of Teichmüller representatives of K.

Let $\beta \in L \otimes_{\kappa} L$. Then there are unique $a_{ij} \in \mathcal{T}$ such that

$$\beta = \sum_{(i,j)\in\mathcal{F}} a_{ij} \pi_L^i \otimes \pi_L^j.$$

Set

$$R(\beta) = \{[i,j] : (i,j) \in \mathcal{F}, a_{ij} \neq 0\}.$$

Then $R(\beta)$ depends on the choice of π_L .

Diagrams and Diagonals

Definition

Define the diagram of $\beta \in L \otimes_{\mathcal{K}} L$ to be

 $D(\beta) = \{ [x, y] \in (\mathbb{Z} \times \mathbb{Z}) / H : [i, j] \preceq [x, y] \text{ for some } [i, j] \in R(\beta) \}.$

Proposition ([Bon2], Remark 2.4.3)

 $D(\beta)$ does not depend on the choice of uniformizer π_L for L.

For $\beta \in L \otimes_{\kappa} L$ with $\beta \neq 0$ define

$$d(\beta) = \min\{i+j : [i,j] \in D(\beta)\}.$$

Define the diagonal of β to be

$$N(\beta) = \{[i,j] \in D(\beta) : i+j = d(\beta)\}.$$

The Generating Set of a Diagram

Let $G(\beta)$ denote the set of minimal elements of $D(\beta)$. Then $N(\beta) \subset G(\beta)$.

Set $i_0 = \mathfrak{b}(p^n - 1)$. Then $i_0 + p^n - 1 = v_L(\delta_{L/K})$ is the valuation of the different of L/K.

Theorem ([Bon2], Proposition 2.4.2)

Let $\beta \in L \otimes_{\kappa} L$ be such that $\xi := \phi(\beta) \in K[G]$. Then the following statements are equivalent:

•
$$[a, b] \in G(\beta).$$

2 For all
$$y \in L$$
 with $v_L(y) = -b - i_0$ we have $v_L(\xi(y)) = a$.

An Example

Let q = 9 and set

$$\beta = a_{50}\pi_L^5 \otimes \pi_L^0 + a_{44}\pi_L^4 \otimes \pi_L^4 + a_{24}\pi_L^2 \otimes \pi_L^4 + a_{05}\pi_L^0 \otimes \pi_L^5.$$

with $a_{ij} \in \mathcal{T} \smallsetminus \{0\}$. We get

$$R(\beta) = \{[5,0], [4,4], [2,4], [0,5]\}$$
$$G(\beta) = \{[5,0], [2,4], [0,5]\}$$
$$N(\beta) = \{[5,0], [0,5]\}$$
$$d(\beta) = 5.$$

The subset of \mathcal{F} corresponding to $D(\beta)$ is . . .

Example Diagram

$$q = 9$$
, $\beta = a_{50}\pi_L^5 \otimes \pi_L^0 + a_{44}\pi_L^4 \otimes \pi_L^4 + a_{24}\pi_L^2 \otimes \pi_L^4 + a_{05}\pi_L^0 \otimes \pi_L^5$

Semistable Extensions

Definition

Say that the extension L/K is semistable if there is $\beta \in L \otimes_K L$ such that $\phi(\beta) \in K[G]$, $p \nmid d(\beta)$, and $|N(\beta)| = 2$.

The element $\phi(\beta)$ can be used to get information about the Galois module structure of ideals in \mathcal{O}_L . It can also be used to give sufficient conditions for the associated order of \mathcal{O}_L to be a Hopf order.

Semistable Extensions

Definition

Say that the extension L/K is semistable if there is $\beta \in L \otimes_K L$ such that $\phi(\beta) \in K[G]$, $p \nmid d(\beta)$, and $|N(\beta)| = 2$.

The element $\phi(\beta)$ can be used to get information about the Galois module structure of ideals in \mathcal{O}_L . It can also be used to give sufficient conditions for the associated order of \mathcal{O}_L to be a Hopf order.

Theorem

Let L/K be a totally ramified Galois extension of degree $q = p^n$. Then L/K is semistable if and only if L/K has a Galois scaffold.

Galois Scaffold \Rightarrow Semistable

Suppose $\{\Psi_1,\ldots,\Psi_n\}$ is a Galois scaffold for L/K. Set

$$\xi = \Psi^{(p^n-2)} = \Psi^{p-2}_n \Psi^{p-1}_{n-1} \dots \Psi^{p-1}_2 \Psi^{p-1}_1.$$

For $y \in L^{\times}$ we get

$$\begin{aligned} v_L(\xi(y)) &= v_L(y) + \mathfrak{b}(p^n - 2) \text{ if } v_L(y) \equiv \mathfrak{b}(p^n - 1) \pmod{p^n} \\ v_L(\xi(y)) &= v_L(y) + \mathfrak{b}(p^n - 2) \text{ if } v_L(y) \equiv \mathfrak{b}(p^n - 2) \pmod{p^n} \\ v_L(\xi(y)) &> v_L(y) + \mathfrak{b}(p^n - 2) \text{ otherwise.} \end{aligned}$$

Let $\beta \in L \otimes_{\kappa} L$ be such that $\phi(\beta) = \xi$. It follows from the above that

$$N(\beta) = \{ [-b_n, 0], [0, -b_n] \}.$$

Therefore L/K is semistable.

Semistable \Rightarrow Galois Scaffold

There is $\xi \in K[G]$ and $\beta \in L \otimes_{\kappa} L$ such that $\phi(\beta) = \xi$ and $|N(\beta)| = 2$.

By [Bon2, Prop. 3.2] we can assume $N(\beta) = \{[i_0, 0], [0, i_0]\}$.

For $1 \le i \le n$ define $\Theta_i = \phi(\beta^{p^n - p^{n-i}-1})$. Then $\Theta_i \in K[G]$, and there is c_i such that $c_i \equiv p^{n-i}b_i \pmod{p^n}$ with the following property:

Let $\lambda \in L^{\times}$ and set $t = v_L(\lambda)$. Then $v_L(\Theta_i(t)) \ge t + c_i$, with equality if and only if $\mathfrak{a}(t)_{(n-i)} \ge 1$.

Set $v_i = (c_i - p^{n-i}b_i)/p^n$. Then $\Psi_i = \pi_K^{-v_i}\Theta_i$ satisfies $v_L(\Psi_i(\lambda)) \ge t + p^{n-i}b_i$, with equality if and only if $\mathfrak{a}(t)_{(n-i)} \ge 1$. Hence $\{\Psi_1, \ldots, \Psi_n\}$ is a Galois scaffold for L/K.